Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.563
1.
Nature ; 626(7999): 643-652, 2024 Feb.
Article En | MEDLINE | ID: mdl-38109937

Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered 'undruggable'. This is particularly true for proteins that function via protein-protein interactions-direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central ß-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.


Allosteric Site , Protein Folding , Proto-Oncogene Proteins p21(ras) , Humans , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Allosteric Site/drug effects , Allosteric Site/genetics , Mutation , Protein Binding , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Reproducibility of Results , Substrate Specificity/drug effects , Substrate Specificity/genetics , Thermodynamics
2.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Article En | MEDLINE | ID: mdl-37914936

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Neurotransmitter Agents , Reserpine , Serotonin , Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Biological Transport/drug effects , Cryoelectron Microscopy , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Reserpine/chemistry , Reserpine/pharmacology , Serotonin/metabolism , Synaptic Transmission , Tetrabenazine/chemistry , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure , Substrate Specificity/drug effects
3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35163294

Understanding the mechanisms of modulators' action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17's broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New 'exosite' (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.


ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/drug effects , ADAM17 Protein/metabolism , ADAM Proteins/metabolism , Binding Sites/drug effects , Catalytic Domain/drug effects , Computer Simulation , Drug Evaluation, Preclinical/methods , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Kinetics , Protease Inhibitors/pharmacology , Substrate Specificity/drug effects
4.
Gene ; 818: 146244, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35074418

The spirochete Leptospira interrogans serovar Copenhageni harbors the genetic elements of the CRISPR-Cas type I-B system in its genome. CRISPR-Cas is a CRISPR RNA (crRNA) mediated adaptive immune system in most prokaryotes against mobile genetic elements (MGEs). To eliminate the intruding MGEs, CRISPR-Cas type I systems utilize a Cascade (CRISPR-associated complex for antiviral defense) complex composed of Cas5, Cas6, Cas7, and Cas8 bound with a crRNA. The Cas7 is essentially known to constitute the major component of the Cascade complex. The present study reports the biochemical characterization of the Cas7 (LinCas7) from the CRISPR-Cas type I-B system of L. interrogans serovar Copenhageni. The pure recombinant LinCas7 (rLinCas7) exists as a monomer in the solution by size exclusion chromatography. The rLinCas7 demonstrates an endoDNase activity dependent upon divalent Mg2+ ions, monovalent ions, pH, temperature, and substrate size. Analysis of ribonucleoprotein composite (rLinCas7-crRNA) by electron microscopy and native-PAGE demonstrated that rLinCas7 could oligomerize on the mature CRISPR RNA (crRNA) framework in the presence of Mg2+ ions. The ribonucleoprotein composite attains a helical shape similar to the backbone of the Cascade complex. However, in the absence of Mg2+ ions, rLinCas7 acts as an RNase. The fluorescence spectroscopy disclosed a weak interaction (Kd = 26.81 mM) between rLinCas7 and Mg2+ ions, leading to an overall conformational change in rLinCas7 that modulates the rLinCas7's activity on DNA and RNA substrates. The nuclease activity of LinCas7 characterized in this study aids to the functional divergences among proteins of the Cas7 family from different CRISPR-Cas systems in various organisms.


CRISPR-Cas Systems/genetics , Cations, Divalent/pharmacology , Leptospira/genetics , Protein Subunits/metabolism , RNA, Bacterial/metabolism , DNA, Bacterial/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Magnesium/pharmacology , Protein Conformation , Protein Subunits/chemistry , Recombinant Proteins/isolation & purification , Substrate Specificity/drug effects
5.
Cells ; 10(12)2021 12 11.
Article En | MEDLINE | ID: mdl-34944009

The proteasome increases its activity at the onset of sperm capacitation due to the action of the SACY/PRKACA pathway; this increase is required for capacitation to progress. PRKA activity also increases and remains high during capacitation. However, intracellular levels of cAMP decrease in this process. Our goal was to evaluate the role of the proteasome in regulating PRKA activity once capacitation has started. Viable human sperm were incubated in the presence and absence of epoxomicin or with 0.1% DMSO. The activity of PRKA; the phosphorylation pattern of PRKA substrates (pPRKAs); and the expression of PRKAR1, PRKAR2, and AKAP3 were evaluated by Western blot. The localization of pPRKAs, PRKAR1, PRKAR2, and AKAP3 was evaluated by immunofluorescence. Treatment with epoxomicin changed the localization and phosphorylation pattern and decreased the percentage of pPRKAs-positive sperm. PRKA activity significantly increased at 1 min of capacitation and remained high throughout the incubation. However, epoxomicin treatment significantly decreased PRKA activity after 30 min. In addition, PRKAR1 and AKAP3 were degraded by the proteasome but with a different temporal kinetic. Our results suggest that PRKAR1 is the target of PRKA regulation by the proteasome.


Cyclic AMP-Dependent Protein Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Sperm Capacitation/physiology , A Kinase Anchor Proteins/metabolism , Adult , Humans , Phosphorylation/drug effects , Proteasome Inhibitors/pharmacology , Proteolysis/drug effects , Signal Transduction/drug effects , Sperm Capacitation/drug effects , Subcellular Fractions/metabolism , Substrate Specificity/drug effects , Young Adult
6.
Cell Mol Life Sci ; 79(1): 27, 2021 Dec 31.
Article En | MEDLINE | ID: mdl-34971423

The rate-limiting serine biogenesis enzyme PHGDH is overexpressed in cancers. Both serine withdrawal and genetic/pharmacological inhibition of PHGDH have demonstrated promising tumor-suppressing activities. However, the enzyme properties of PHGDH are not well understood and the discovery of PHGDH inhibitors is still in its infancy. Here, oridonin was identified from a natural product library as a new PHGDH inhibitor. The crystal structure of PHGDH in complex with oridonin revealed a new allosteric site. The binding of oridonin to this site reduced the activity of the enzyme by relocating R54, a residue involved in substrate binding. Mutagenesis studies showed that PHGDH activity was very sensitive to cysteine mutations, especially those in the substrate binding domain. Conjugation of oridonin and other reported covalent PHGDH inhibitors to these sites will therefore inhibit PHGDH. In addition to being inhibited enzymatically, PHGDH can also be inhibited by protein aggregation and proteasome-mediated degradation. Several tested PHGDH cancer mutants showed altered enzymatic activity, which can be explained by protein structure and stability. Overall, the above studies present new biophysical and biochemical insights into PHGDH and may facilitate the future design of PHGDH inhibitors.


Biophysical Phenomena , Enzyme Inhibitors/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Cysteine/genetics , Cysteine/metabolism , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Enzyme Inhibitors/chemistry , Glyceric Acids/metabolism , Humans , Mutation/genetics , NAD/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Proteolysis/drug effects , Substrate Specificity/drug effects
7.
Cell Mol Life Sci ; 79(1): 15, 2021 Dec 30.
Article En | MEDLINE | ID: mdl-34967918

Excessive activation of the ionotropic N-methyl-D-aspartate (NMDA) receptor has been shown to cause abnormally high levels of Ca2+ influx, thereby leading to excitotoxic neuronal death. In this study, exposure of mouse primary cortical neurons to NMDA resulted in the cleavage and activation of mammalian sterile 20-like kinase-1 (MST1), both of which were mediated by calpain 1. In vitro cleavage assay data indicated that calpain 1 cleaves out the autoinhibitory domain of MST1 to generate an active form of the kinase. Furthermore, calpain 1 mediated the cleavage and activation of wild-type MST1, but not of MST1 (G339A). Intriguingly, NMDA/calpain-induced MST1 activation promoted the nuclear translocation of the kinase and the phosphorylation of histone H2B in mouse cortical neurons, leading to excitotoxicity. Thus, we propose a previously unrecognized mechanism of MST1 activation associated with NMDA-induced excitotoxic neuronal death.


Cerebral Cortex/pathology , N-Methylaspartate/toxicity , Neurons/pathology , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Calpain/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Mice, Inbred C57BL , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , Neurotoxins/toxicity , Protein Serine-Threonine Kinases/genetics , Protein Transport/drug effects , Substrate Specificity/drug effects
8.
Biochem Pharmacol ; 194: 114824, 2021 12.
Article En | MEDLINE | ID: mdl-34748821

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.


Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/metabolism , Diphenylamine/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Diphenylamine/toxicity , Humans , Inactivation, Metabolic/drug effects , Inactivation, Metabolic/physiology , Substrate Specificity/drug effects , Substrate Specificity/physiology
9.
Cells ; 10(11)2021 11 20.
Article En | MEDLINE | ID: mdl-34831476

Clustered DNA lesions (CDL) containing 5',8-cyclo-2'-deoxypurines (cdPus) are an example of extensive abnormalities occurring in the DNA helix and may impede cellular repair processes. The changes in the efficiency of nuclear base excision repair (BER) were investigated using (a) two cell lines, one of the normal skin fibroblasts as a reference (BJ) and the second from Xeroderma pigmentosum patients' skin (XPC), and (b) synthetic oligonucleotides with single- and double-stranded CDL (containing 5',8-cyclo-2'-deoxyadenosine (cdA) and the abasic (AP) site at various distances between lesions). The nuclear BER has been observed and the effect of both cdA isomers (5'R and 5'S) presence in the DNA was tested. CdPus affected the repair of the second lesion within the CDL. The BER system more efficiently processed damage in the vicinity of the ScdA isomer and changes located in the 3'-end direction for dsCDL and in the 5'-end direction for ssCDL. The presented study is the very first investigation of the repair processes of the CDL containing cdPu considering cells derived from a Xeroderma pigmentosum patient.


Cell Nucleus/pathology , DNA Damage , DNA Repair , Purines/pharmacology , Xeroderma Pigmentosum/pathology , Cell Line , Cell Nucleus/drug effects , DNA Repair/drug effects , Humans , Substrate Specificity/drug effects
10.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Article En | MEDLINE | ID: mdl-34615851

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.


NAD(P)H Dehydrogenase (Quinone)/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/antagonists & inhibitors , Animals , Caspases/metabolism , Cell Death/drug effects , Cell Line, Tumor , Deubiquitinating Enzymes/metabolism , Female , High-Throughput Screening Assays , Humans , Mice, Nude , Phenotype , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Recombinant Proteins/metabolism , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
11.
PLoS Biol ; 19(10): e3001408, 2021 10.
Article En | MEDLINE | ID: mdl-34695132

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Erythrocytes/parasitology , Myristic Acid/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Lipoylation/drug effects , Merozoites/drug effects , Merozoites/metabolism , Parasites/drug effects , Parasites/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/ultrastructure , Solubility , Substrate Specificity/drug effects
12.
Biomolecules ; 11(10)2021 10 09.
Article En | MEDLINE | ID: mdl-34680119

Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.


Carboxylic Ester Hydrolases/metabolism , Jatropha/enzymology , Models, Molecular , Static Electricity , Amino Acid Sequence , Analysis of Variance , Carboxylic Ester Hydrolases/chemistry , Catalytic Domain , Cations, Divalent/pharmacology , Esterases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Isoelectric Point , Proteolysis/drug effects , Proteomics , Solvents , Stereoisomerism , Substrate Specificity/drug effects , Temperature
13.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article En | MEDLINE | ID: mdl-34635581

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Benzothiazoles/pharmacology , COVID-19 Drug Treatment , Oligopeptides/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Animals , Benzamidines/chemistry , Benzothiazoles/pharmacokinetics , COVID-19/genetics , COVID-19/virology , Cell Line , Drug Design , Epithelial Cells/drug effects , Epithelial Cells/virology , Esters/chemistry , Guanidines/chemistry , Humans , Lung/drug effects , Lung/virology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Oligopeptides/pharmacokinetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/drug effects , Serine Endopeptidases/ultrastructure , Small Molecule Libraries/pharmacology , Substrate Specificity/drug effects , Virus Internalization/drug effects
14.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Article En | MEDLINE | ID: mdl-34562363

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Stress, Physiological , Amino Acids/chemistry , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line , Female , Humans , Ions , Mice , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding/drug effects , Protein Stability/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological/drug effects , Structure-Activity Relationship , Substrate Specificity/drug effects , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination/drug effects , Zinc/pharmacology
15.
Biomolecules ; 11(9)2021 09 14.
Article En | MEDLINE | ID: mdl-34572571

A recently discovered bisubstrate inhibitor of Nicotinamide N-methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC50 value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor. The modification of the carboxylic acid into a range of esters in the absence or presence of a trimethyl-lock (TML) amine protecting group yielded a range of candidate prodrugs. Based on the stability in an aqueous buffer, and the confirmed esterase-dependent conversion to the parent compound, the isopropyl ester was selected as the preferred acid prodrug. The isopropyl ester and isopropyl ester-TML prodrugs exhibit improved cell permeability, which also translates to significantly enhanced cellular activity as established using assays designed to measure the enzymatic activity of NNMT in live cells.


Enzyme Inhibitors/pharmacology , Esterases/metabolism , Nicotinamide N-Methyltransferase/antagonists & inhibitors , Prodrugs/pharmacology , Biological Assay , Buffers , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Nicotinamide N-Methyltransferase/metabolism , Prodrugs/chemical synthesis , Prodrugs/chemistry , Substrate Specificity/drug effects
16.
Int J Biol Macromol ; 189: 65-71, 2021 Oct 31.
Article En | MEDLINE | ID: mdl-34419538

Angiotensin-converting enzyme (ACE, EC 3.4.15.1) plays a significant role in blood pressure regulation and inhibition of this enzyme is one of the significant drug targets for the treatment of hypertension. In this work, ACE was purified from sheep kidneys with the affinity chromatography method in one step. The purity and molecular weight of ACE were designated using the SDS-PAGE method and observed two bands at around 60 kDa and 70 kDa on the gel. The effects of nicotinamide (vitamin B3) and reduced glutathione (GSH) peptide on purified ACE were researched. Nicotinamide and GSH peptide on purified ACE showed an inhibition effect. IC50 values for nicotinamide and GSH were calculated as 14.3 µM and 7.3 µM, respectively. Type of inhibition and Ki values for nicotinamide and GSH from the Lineweaver-Burk graph were determined. The type of inhibition for nicotinamide and GSH was determined as non-competitive inhibition. Ki value was calculated as 15.4 µM for nicotinamide and 6.7 µM for GSH. Also, GSH peptide showed higher inhibitory activity on ACE activity than nicotinamide. In this study, it was concluded that nicotinamide and GSH peptide compounds, which show an inhibition effect on ACE activity, may have both protective and therapeutic effects against hypertension.


Angiotensin-Converting Enzyme Inhibitors/pharmacology , Glutathione/pharmacology , Kidney/enzymology , Niacinamide/pharmacology , Peptides/pharmacology , Peptidyl-Dipeptidase A/metabolism , Animals , Inhibitory Concentration 50 , Kinetics , Peptidyl-Dipeptidase A/isolation & purification , Sheep , Substrate Specificity/drug effects
17.
Int J Biol Macromol ; 188: 1012-1024, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34375665

The oxygenases have attracted considerable attention in enzyme-mediated bioremediation of xenobiotic compounds due to their high specificity, cost-effectiveness, and targeted field applications. Here, we performed a functional metagenomics approach to cope with culturability limitations to isolate a novel extradiol dioxygenase. Fosmid clone harboring dioxygenase gene was sequenced and analyzed by bioinformatics tools. One ring-cleaving dioxygenase RW4-MPC (metapyrocatechase) was purified and characterized to examine its degradation efficiency. The RW4-MPC was significantly active in the temperature and pH range of 5 to 40 °C, and 7-10, respectively, with an optimum temperature of 25 °C and pH 8. To gain insight into observed differential activity, Small-Angle X-ray Scattering (SAXS) data of the protein samples were analyzed, which brought forth that the RW4-MPC molecules form tight globular tetramers in solution. This native association was stable till 35 °C, and protein started to associate at higher temperatures, explaining heat-induced loss of function. Similarly, RW4-MPC aggregated or lost globular profile below pH 7 or at pH 10, respectively. The kinetic parameters showed the six folds high catalytic efficiency of RW4-MPC towards 2,3-dihydroxy biphenyl than catechol and its derivatives. RW4-MPC molecules showed remarkable retention of functionality in hypersaline conditions with more than 70% activity in a buffer having 3 M NaCl concentration. In concordance, SAXS data analysis showed retention of functional shape profile in hypersaline conditions. The halotolerant and oxygen insensitive nature of this enzyme makes it a potential candidate for bioremediation.


Catechol 2,3-Dioxygenase/chemistry , Catechol 2,3-Dioxygenase/metabolism , Metagenomics , Scattering, Small Angle , X-Ray Diffraction , Amino Acid Sequence , Catechol 2,3-Dioxygenase/isolation & purification , Circular Dichroism , Clone Cells , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Ions , Kinetics , Metals/pharmacology , Molecular Weight , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sodium Chloride/pharmacology , Substrate Specificity/drug effects , Temperature
18.
Cells ; 10(7)2021 06 22.
Article En | MEDLINE | ID: mdl-34206530

Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.


Anti-Inflammatory Agents/pharmacology , Macrophages/metabolism , Vitamin K/pharmacology , Animals , Atorvastatin/pharmacology , Cell Respiration/drug effects , Cyclooxygenase 2/biosynthesis , Cytokines/biosynthesis , Eicosanoids/biosynthesis , Enzyme Induction/drug effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Substrate Specificity/drug effects
19.
Sci Rep ; 11(1): 12768, 2021 06 17.
Article En | MEDLINE | ID: mdl-34140593

As an approach to the exploration of cold-active enzymes, in this study, we isolated a cold-active protease produced by psychrotrophic bacteria from glacial soils of Thajwas Glacier, Himalayas. The isolated strain BO1, identified as Bacillus pumilus, grew well within a temperature range of 4-30 °C. After its qualitative and quantitative screening, the cold-active protease (Apr-BO1) was purified. The Apr-BO1 had a molecular mass of 38 kDa and showed maximum (37.02 U/mg) specific activity at 20 °C, with casein as substrate. It was stable and active between the temperature range of 5-35 °C and pH 6.0-12.0, with an optimum temperature of 20 °C at pH 9.0. The Apr-BO1 had low Km value of 1.0 mg/ml and Vmax 10.0 µmol/ml/min. Moreover, it displayed better tolerance to organic solvents, surfactants, metal ions and reducing agents than most alkaline proteases. The results exhibited that it effectively removed the stains even in a cold wash and could be considered a decent detergent additive. Furthermore, through protein modelling, the structure of this protease was generated from template, subtilisin E of Bacillus subtilis (PDB ID: 3WHI), and different methods checked its quality. For the first time, this study reported the protein sequence for psychrotrophic Apr-BO1 and brought forth its novelty among other cold-active proteases.


Bacteria/enzymology , Cold Temperature , Ice Cover/microbiology , Peptide Hydrolases/isolation & purification , Soil Microbiology , Amino Acid Sequence , Bacteria/isolation & purification , Caseins/metabolism , Catalytic Domain , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Hydrolysis , India , Ions , Kinetics , Metals/pharmacology , Models, Molecular , Molecular Weight , Oxidants/pharmacology , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Phylogeny , Protein Domains , Solvents/pharmacology , Substrate Specificity/drug effects , Surface-Active Agents/pharmacology
20.
J Biol Chem ; 297(1): 100841, 2021 07.
Article En | MEDLINE | ID: mdl-34058201

SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.


Acetylesterase/chemistry , Acetylesterase/metabolism , Adaptation, Physiological , Cold Temperature , Acetylesterase/antagonists & inhibitors , Acetylesterase/genetics , Amino Acid Sequence , Bacteria/enzymology , Catalytic Domain , Enzyme Inhibitors/pharmacology , Enzyme Stability/drug effects , Kinetics , Metals/pharmacology , Models, Molecular , Molecular Dynamics Simulation , Mutation/genetics , Phylogeny , Protein Multimerization , Substrate Specificity/drug effects , Temperature
...